Chapter 12

Flux Cored Arc Welding Equipment, Setup, and Operation

© 2012 Delmar, Cengage Learning

Objectives

- Explain the FCA welding process
- Describe what equipment is needed for FCA welding
- List the advantages of FCA welding, and explain its limitations
- Tell how electrodes are manufactured and explain the purpose of the electrode cast and helix
- Discuss what flux can provide to the weld and how fluxes are classified

Objectives (cont'd.)

- Explain what each of the digits in a standard FCAW electrode identification number mean
- Describe the proper care and handling of FCAW electrodes
- List the common shielding gases used, and explain their benefits
- Explain how changing the welding gun angle affects the weld produced
- Identify the methods of metal transfer and describe each

Objectives (cont'd.)

- Explain the effect electrode extension has on FCA welding
- Tell what can cause weld porosity and how it can be prevented

Introduction

- Flux cored arc welding (FCAW)
 - Fusion welding process
 - Weld heating is produced from an arc between the work and a continuously fed filler metal electrode
 - Atmospheric shielding
 - Provided completely or in part by flux sealed within the tubular electrode
 - Rise in the in use of FCAW
 - Due to a number of factors

Principles of Operation

- FCA is similar to operation of GMA welding
 - Both use a constant-potential (CP) or constantvoltage (CV) power supply
- Flux inside electrode
 - Provides molten weld pool protection
 - Improves strength
 - Improves weld shape
- Major atmospheric contamination
 - Comes from oxygen and nitrogen

Principles of Operation (cont'd.)

- Carbon, chromium, and vanadium can be added to improve:
 - Hardness and strength
 - Creep and corrosion resistance
- Gas formers
 - Rapidly expand and push air away from molten weld pool
- Slag

- Protects hot metal from atmosphere

Welding Principles and Applications Seventh Edition

FIGURE 12-4 The slag covering keeps the welding heat from escaping quickly, thus slowing the cooling rate.

© Cengage Learning 2012

Equipment

- Same type required for GMAW
 - FCA welding guns
 - Available as water-cooled or air-cooled
 - Fume extraction nozzles
 - Vacuum pulls smoke back into a specially designed smoke extraction nozzle
 - Electrode feed systems
 - Similar to those used for GMAW

Advantages

- Include:
 - High deposition rate is possible
 - Minimum electrode waste
 - Narrow groove angle can be used
 - Adding deoxidizers allows for minimum cleaning
 - All-position welding
 - Changes in power settings give flexibility
 - Addition of flux provides high quality welds
 - Excellent control of molten weld pool

Limitations

- Include:
 - Confined to ferrous metals and nickel-based alloys
 - Equipment and electrodes are more expensive
 - Removal of slag requires another production step
 - Increase in smoke and fume generation

FCAW Electrodes

- Manufacturing method
 - Form a thin sheet of metal into a U-shape
 - Pour in flux
 - Squeeze shut
 - Pass through a series of dies to size it
- Another method
 - Start with a seamless tube
 - Seal one end
 - Pour in flux

Welding Principles and Applications Seventh Edition

Welding Principles and Applications Seventh Edition

FIGURE 12-8 This shows one method of filling seamless FCA welding filler metal with flux. The vibration helps compact the granular flux inside the tube. © Cengage Learning 2012. <u>View Welding Video</u>

Click here to view closed captioning

© 2012 Delmar, Cengage Learning

FCAW Electrodes (cont'd.)

- Electrode cast and helix
 - Feed out some wire electrode and cut it off
 - Lay it on the floor and watch it form a circle
 - Diameter of circle is the cast
 - Wire electrodes do not lay flat
 - Height is the helix

CAS

HELIX

FCAW Electrodes (cont'd.)

• Cast and helix cause the wire to rub on the contact tube

FCA Welding Electrode Flux

- Flux can provide all or part of the following:
 - Deoxidizers
 - Slag formers
 - Fluxing agents
 - Arc stabilizers
 - Alloying elements
 - Shielding gas (<u>View Welding Video</u>)

Click here to view closed captioning

FCA Welding Electrode (cont'd.)

- Types of FCAW fluxes
 - Rutile-based flux are acidic
 - Produces a smooth, stable arc and a refractory hightemperature slag
 - Produces fine drop transfer and low fumes
 - Used for out-of-position welding
 - Lime-based fluxes are basic
 - Remove impurities
 - Undesirable for out-of-position welding

Welding Principles and Applications Seventh Edition

Larry Jeffus

Mild Steel

- Electrode number *E70T-10* is used to explain the electrode classification system
 - E: electrode
 - 7: tensile strength in units of ten thousand
 - 0: used for flat and horizontal fillets only, and 1 is used for all position electrodes
 - T: tubular electrode
 - 10: number ranges from 1 to 14
 - Indicates electrode shielding gas and other welding characteristics

Mild Steel (cont'd.)

- Electrode *E70T-10* can have optional identifiers such as *E70T-10MJH8*
 - -M: mixed gas, 75-80% Ar, balanced CO₂
 - J: Charpy V-notch impact test value
 - H8: residual hydrogen levels in the weld

Stainless Steel Electrodes

- AWS classification for stainless steel for FCAW electrodes starts with the letter *E*
 - Following the E: AISI three-digit stainless steel number is used
 - To the right of the number: dash and a suffix number indicating welding position

Metal Cored Steel Electrode Identification

- Addition of metal powders to flux produced a new classification
- Example: *E70C-3C*
 - E: electrode
 - 7: tensile strength in units of 10,000 psi
 - 0: flat and horizontal fillets only, and 1 for all positions
 - C: metal-cored electrode
 - 3: used for a Charpy impact
 - C: indicates CO₂

Care of Flux Core Electrodes

- Considerations
 - May be wrapped in sealed plastic bags or special paper
 - Some are shipped in cans or cardboard boxes
 - Crystal desiccant is sometimes placed in the shipping container
 - Some require storage in an electric rod oven
 - Weather conditions affect ability to make high quality welds
 - May be necessary to preheat base metal to drive out moisture

Shielding Gas

- Key terms
 - Self-shielding: electrode provides all shielding
 - Dual shield: shielding gas is added
- Care must be taken to use cored electrodes with the recommended gases
 - Selection effects arc and weld properties
- Shielding gas comes in high-pressure cylinders
 - Gases used for FCA welding: $C0_2$ and mixtures of argon and $C0_2$
 - Straight C0₂ can be used for some welding

CENGAGE Learnin

Shielding Gas (cont'd.)

- Most FCA welding electrodes are:
 - Specifically designed to be used with or without shielding gas
 - For a specific shielding gas
 - For a percentage mixture
- Never use an FCA electrode with a nondesignated shielding gas
 - Weld produced may be unsafe

Welding Principles and Applications Seventh Edition

Larry Jeffus

Welding Techniques

- Gun angle, work angle, and travel angle
 - Refer to relation of gun to work surface (<u>View</u>
 <u>Welding Video</u>) Click here to view closed captioning
 - Gun angle can be used to control the weld pool
 - Changes in travel angle will affect weld bead shape and penetration
- FCAW electrodes have a mineral-based flux
 - These fluxes are refractory and become solid at a high temperature

Forehand/Perpendicular/Backhand Techniques

- Often used to describe gun angle as it relates to work and direction of travel
 - Forehand technique: pushing the weld bead
 - Backhand technique: pulling or dragging the weld bead
 - Perpendicular technique: gun angle is at approximately 90° to the work surface

Welding Principles and Applications Seventh Edition

FIGURE 12-20 Changing the welding gun angle between forehand, perpendicular, or backhand angles will change the shape of the weld bead produced.

© Cengage Learning 2012

Advantages and Disadvantages of the Forehand Technique

- Advantages
 - Joint visibility
 - Electrode extension
 - Less weld penetration
 - Out-of-position welds
- Disadvantages
 - Weld thickness
 - Welding speed
 - Slag inclusions and spatter

Advantages and Disadvantages of the Perpendicular Technique

- Advantages
 - Machine and robotic welding
 - No need to change the gun angle
 - Uniform bead shape
 - Penetration and reinforcement are balanced
- Disadvantages
 - Limited visibility
 - Welding gun is directly over the weld
 - Weld spatter
 - Weld spatter can collect in the nozzle

Advantages and Disadvantages of the Backhand Technique

- Advantages
 - Weld bead visibility
 - Travel speed
 - Depth of fusion
- Disadvantages
 - Weld buildup
 - Post weld finishing
 - Joint following
 - Loss of penetration

Travel Speed

- Linear rate at which the arc is moved along the weld joint
 - Fast travel speeds deposit less filler metal
- Undercut
 - Occurs along edges or toes of the weld
- Preferred rate of travel for maximum penetration
 - Can stay within selected welding variables
 - Can control fluidity of weld pool

Mode of Metal Transfer

- Describes how molten weld metal is transferred across the arc to base metal
- Mode of transfer, weld shape, and depth of penetration depend on:
 - Welding power source
 - Wire electrode size
 - Type and thickness of material
 - Type of shielding gas
 - Best welding position

Spray Transfer – FCAW-G

- Most common process used with gas shielded FCAW
- FCAW-G can be used:
 - On thin or prepared thick sections of material
 - On a combination of thick to thin materials
 - With small or large electrode diameters
 - With a combination of shielded gases

Globular Transfer – FCAW-G

- Occurs when welding current is below transition current
 - Arc becomes unstable because of gravitational pull from large drops
- Electrode extension
 - Measured from end of electrode contact tube to the point the arc begins at the end of the electrode
- Porosity in the weld

– Can be a constant problem

Troubleshooting FCA Welding

- Often a trial-and-error process
 - Make one adjustment or change at a time
 - Make a trial weld to see if the problem improved
 - Repeat until the problem is resolved
- Common causes of FCA welding problem
 - Equipment setup
 - Worn or dirty parts

Summary

- Flux cored arc welding
 - Produces more tons of welded fabrications that any other process
 - Wide variety of flux cored arc welding filler metals and shielding gas combinations are available
 - Very few differences in manipulation and setup among filler metals

